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Streamline Diffusion Methods for the 
Incompressible Euler and Navier-Stokes Equations 

By Claes Johnson and Jukka Saranen 

Abstract. We present and analyze extensions of the streamline diffusion finite element method 
to the time-dependent two-dimensional Navier-Stokes equations for an incompressible fluid in 
the case of high Reynolds numbers. The limit case with zero viscosity, the Euler equations, is 
also considered. 

Introduction. The Streamline Diffusion method is a finite element method for 
convection-dominated convection-diffusion problems recently introduced by Hughes 
and Brooks [5], [6] in the case of stationary problems. The mathematical analysis of 
this method for linear problems, together with extensions to time-dependent prob- 
lems using space-time elements, was started in Johnson and NMvert [8] and was 
continued in [9], [16] and [10]. The outcome of this work is that the SD (Streamline 
Diffusion)-method can be demonstrated to have both good stability properties and 
high accuracy, a combination of desirable features not shared by previously known 
finite element methods; standard methods either (as the usual Galerkin method) are 
formally higher-order accurate, but lack in stability and produce severely oscillating 
solutions if the exact solution is nonsmooth, or (as the classical artificial viscosity or 
upwind method) contain a large amount of artificial diffusion, limiting the accuracy 
to at most first-order. The main theoretical results for the SD-method in [8], [9], [16] 
and [10] are almost-optimal error estimates, together with localization results which 
show that effects are propagated in the discrete problem in a way similar to what is 
the case in the continuous problem. In particular, it follows from these localization 
results that the presence of, e.g., a boundary layer in the exact solution only affects 
the accuracy of the discrete solution close to the layer. This is in contrast to the usual 
Galerkin method, where the presence of a boundary layer in general severely 
degrades the accuracy in the whole domain. The analysis of the SD-method also 
shows the necessity of sharpening the classical stability concept for finite element (or 
finite difference) methods for hyperbolic type problems, such as, e.g., convection-dif- 
fusion problems with dominating convection. 

The purpose of this note is to present extensions of the SD-method to some 
nonlinear hyperbolic problems in fluid mechanics: The time-dependent two-dimen- 
sional Navier-Stokes equations for an incompressible Newtonian fluid in the case of 
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high Reynolds number and also the limit case with zero viscosity, the Euler 
equations. We shall present methods for which global error estimates can be proved 
which are analogous to those mentioned above for linear problems. Propagation-of- 
information results for the discrete versions of the nonlinear problems considered 
would be very desirable to have, but seem very difficult to obtain; as far as we know, 
results of this nature are not even known for the continuous problems. For earlier 
work on SD-methods for the incompressible Navier-Stokes equations, see [7]. 

An outline of this note is as follows: In Section 1 we briefly review the SD-method 
for a linear convection-dominated convection-diffusion problem and recall the basic 
error estimate in this case. In Section 2 we present and analyze a streamline-diffu- 
sion type method for the Euler equations for an incompressible fluid in the case of 
two space dimensions. This method is based on using the stream function-vorticity 
formulation of the Euler equations. Finally, in Section 3 we consider two methods 
for the time-dependent Navier-Stokes equations also in two dimensions: One 
method using a velocity-pressure formulation, and one method using a velocity-pres- 
sure-vorticity formulation. The latter method is a streamline-diffusion variant of a 
mixed method for the Navier-Stokes equations previously analyzed by Girault and 
Raviart [4] in the case of low Reynolds numbers. 

In the methods considered in this note, the approximate solution is sought on each 
time level as a piecewise polynomial on a finite element grid not necessarily aligned 
with the flow. We plan to compare our methods with 'grid free' so-called vortex 
methods, which have recently attracted renewed interest (see, e.g., [1]). Numerical 
experiments with the methods studied in the paper are under way and the results will 
be presented elsewhere. 

In what follows, C will denote a positive constant, not necessarily the same at 
each occurrence, independent of the parameters h and e. 

1. A Linear Convection-Diffusion Problem. 
1.1. The Continuous Problem. As a model for time-dependent convection-dominated 

convection-diffusion problems we shall consider the following problem: Find the 
scalar function u = u(x, t) such that 

(1.1a) U t + up8 - -Au = f in Q x I, 
(1.lb) u = 0 on F x I, 
(1.lc) t u = u0 in 2 for t = O, 

where 2 is a bounded domain in 12 with boundary F, ut = au/at, up= ,B Vu, 
with v u the gradient with respect to x = (xI, x2) E1 R2, and /3 = (PI, 32) is a given 
smooth vector-field and - > 0 a small constant. Further, f and uo are given data, 
and I = (0, T) is a given time interval. 

1.2. The Streamline-Diffusion Method. The SD-method for (1.1) is based on using 
finite elements over the space-time domain Q = 2 x I, i.e., a finite element formula- 
tion is used not only in space, but also to discretize in time. To define this method, 
let Y7_h = { T} be a finite element subdivision of 2 with elements X and let 
0 = to < t1 < ... < tM = T be a subdivision of the time interval I into intervals 
i= (t, te+ 1), Let W'h = { K } be the corresponding subdivision of Q into elements 
K = T X In, with h representing the maximum of the diameters of the K E= Wh, and 
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let Pk(K) be the set of polynomials in x and t of degree at most k on K, and define 
for k > 1 

(1.2) Vh={VE X:vIKEPk(T) X Pk(Im) VK = T X Im E t } 

where JX= HIm-I HI(Sm), with Sm = 2 X Im. In other words, Vh is the set of 
piecewise polynomial functions on Wh of degree at most k that are continuous in x 
and possibly discontinuous in t across the time levels tin m = 1,..., M- 1. We 
shall assume that Wh is a regular subdivision of Q. i.e., for each K E Wh there is an 
inscribed sphere in K such that the ratio of the diameter of this sphere and the 
diameter of K is bounded below, independently of K and h. 

We shall use the following notation: Given a domain G, let (.,* )G denote the 
usual L2(G) scalar product and 11 I1G the corresponding norm. Also, HS(G) for s a 
positive integer will denote the usual Sobolev space of functions with square 
integrable derivatives of order less than or equal to s with norm 11 - ItsG. Further, for 
piecewise polynomials v and w defined on the triangulation Wh= {K}, where 

'h C Why and for differential operators Di, we use the notation 

(D1vD2W)Q = E (D1vD2W)K, Q'= U K, 

i.e., we just sum the integrals over each element K E Wh. We also write 

(W V)m = (W, V)S Vm = M 

(WVM = (W( 
- 

9 Q9 V( 
- 

tm)) Q IV Im = 9 (v, 1~/2 

v +(x, t) = lim v(x, t + s), [v] = v+- v. 
s -D0+ 

The SD-method for (1.1) can now be formulated as follows: Find Eh e Vh = 

{v E Vh: v = Oon IFx I} suchthatform = 0,...,M- 1, 

(h +h v + (Vt + V)) + ([h], V+)m + C(VUVV)m ~~ + + 
P'/m~h V\I 

m 

-e8(Luv, + M = (fV + 8(V, + V13))M TV C V*, 

where 8 = Ch with C a suitably chosen (sufficiently small, see [10] and below) 
positive constant and u(.,0)= uo are initial data and where, according to the 
above convention, the expression (Auh, Vt + V,3)m is interpreted as a sum of integrals 
over the elements K E- Wh in the slab Sm. 

It is proved in [16] that if uh (., tm) is given, then (1.3) defines Uh uniquely in the 
slab Sr, and thus uh can be computed successively on the slabs Sn' starting at So 
where Uh (., 0) = U0 is given. For each m, (1.3) is equivalent to a linear system of 
equations and thus (1.3) corresponds to an implicit scheme for (1.1). 

Remark 1.1. If E > h we would choose 8 = 0 and then (1.3), as regards the 
time-discretization, would coincide with the Discontinuous Galerkin method, re- 
cently analyzed in [3] in the case of a parabolic-type problem corresponding to 
choosing e- 1 in (1.1) (see also [12]). In the parabolic case, the Discontinuous 
Galerkin method for time-discretization is demonstrated to have very satisfactory 
properties, resulting in a method of order 2k + 1 with respect to t, when using 
polynomials of order k in time. In fact, if f 0 and the time step is uniform, then 
the difference methods corresponding to the subdiagonal in the Pade table are 
retrieved in this way. C 



4 CLAES JOHNSON AND JUKKA SARANEN 

Note that the feature that distinguishes (1.3) from conventional finite element or 
Galerkin methods is the presence of the term 8(v, + vie). The rationale for this 
modification is that choosing v = u E Vh in (1.3), and summing over m, we obtain 
control of a term of the form 

2 2 12 ~~M-1 121/2 
[8UIUT + U$ IIQ + I UMI +| IO + 

J I[Uh] 1 
m-2 

in terms of the data uo and f. This extra stability, as compared with Standard 
Galerkin, where 8 = 0. is the key to the good properties of the method, allowing 
"almost optimal" error estimates and localization results to be demonstrated [10], 
[16]. The basic error estimate for (1.3), when e < h, reads as follows, 

(1.4) Ijju - uh Chkl/2I1uIIk+lQ. 

where 

IIjwIj = I max I|w(, t)I + hIIw, + w#IQ + ellvwIQ + - I[w]IIMI 
[OK It<-T m=1 J 

Remark 1.2. For the stationary analogue of (1.1) with no u,-term, the modified test 
function in the SD-method has the form (v + 8va), which together with the term up 
introduces a term of the form 8(u, h vie) which can be interpreted as resulting from 
diffusion -8uos acting only in the streamline direction PB. This is the motivation for 
the term "streamline diffusion". Note that in the time-dependent problem (1.1) it is 
important to introduce the term 8(uh + up, v, + vi) corresponding to a diffusion 
acting in the direction (/1, 1) in space-time (cf. [6], [7], where only the modification 
(v + Arv8) is used, even in the time-dependent case). 0 

For numerical experiments with the SD-method (1.3), demonstrating the good 
properties of this method, also in the case of nonsmooth exact solutions, together 
with comparisons with the nonsatisfactory results obtained when putting 8 = 0. we 
refer to [16]. 

1.3. Discontinuous Galerkin. If e = 0 in (1.1), then we can use trial functions in the 
discrete problem, which may be discontinuous across interelement boundaries also 
in the space variable. Note that with E = 0, (1.lb, c) is replaced by 

u = uo on aQ-, 

where 

aQ-= {(x, t) E aQ: n,(x, t) + n(x, t) * f3(x, t) < 0), 

and uo(x, t) = 0 if t > 0. Here, of course, aQ = Q x {0} U Q X {T} U 1 x I, and 
(n, n,) is the outward unit normal to aQ in R3. 

To define a finite element method using discontinuous functions, let us introduce 
the following notation: If /1 = (f1B, /2) is a given smooth vector field on Q. we define 
for K E Wh 

(1.5) aK::F(,) = {(x, t) E M: n,(x, t) + n(x, t) * ,8(x, t.) >< 0), 

where (n, n,) denotes the outward unit normal to K C Q. Further, let 

w(x, t) = lim w(x+so, t+s), [w]=w+- w 
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and introduce for k > 0, 

Wh ={v E L2(Q): vIK E Pk(K) VK E Wh} 

The Discontinuous Galerkin method for (1.1) can now be formulated as follows: 
Find Uh E Wh such that 

(U. + u h, V + S(Vt + VO))Q + E] |va]+ln, + n * #I ds 
(1.6) 

t f [uh=vh ?K-(I?)nf 

= (f V + (Vt + V)) Q tVVE Wh, 

where 8 = 0 or 8 = h, and u_= uo on 8Q_. With 8 = 0, this is the usual Dis- 
continuous Galerkin method, first analyzed in [13], where L2-error estimates of order 
O(hk) are proved. In [11], these estimates are improved to e(hk+l/2), and it is 
demonstrated that the Discontinuous Galerkin method with 8 = 0 or 8 = h has 
properties very similar to the SD-method, in particular allowing the localization 
results for the SD-method to be carried over to the present case. Further, the 
Discontinuous Galerkin method (1.6) gives an explicit scheme, whereby the discrete 
solution on each slab Sm can be computed successively on triangle after triangle, 
starting at the inflow boundary of Sm. 

Remark 1.3. One may use in (1.3) or (1.6) different finite element subdivisions in 
different slabs Sm. This can be used, e.g., to locally refine the mesh around a 
progressing sharp front. C 

2. The Euler Equations. 
2.1. The Continuous Problem. Let us now assume that Q c R2 is simply connected 

with smooth boundary r, and let us recall the Euler equations for an incompressible 
fluid: Given g and u0, find the velocity u = (u1, u2) and the pressure p such that 
(2.1a) ut + u * Vu + vp = g in &2x I, 

(2.1b) divu = 0 in & x I, 

(2.1c) u * n=0 on f x I, 

(2.1d) u = u0 in 9 fort = 0, 
where n = n(x) is the outward unit normal to r. It is known (see, e.g., [17]) that if g 
and u0 are smooth, with div u0 = 0 in R and u0 * n = 0 on F, then (2.1) admits a 
unique smooth solution for any T. 

Let us now reformulate (2.1) using the stream function-vorticity formulation. 
Since &2 is simply connected and div u = 0, there is a unique stream function 4i(x, t) 
such that 

u= rotA ax2' 8l)' 'Ir0x 
Alternatively, 4(, t) can be specified as the unique solution of the Poisson equation 

(2.2) {-A(., t) = w(. t) in i', 
* t A~~~~~~~= 0 on r, 

where 

r U2 au, X=rot u -- -- 
ax, aX2 
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is the vorticity of the velocity field u. Applying the operator rot to (2.1a), we obtain 
the following reformulation of (2.1): Find X such that 

(2.3) {Wt 
+ U() * VW =f in 

fo 
x (O T), 

t ~ ~~~ X = in Sa for t = 0, 

where f = rot g, wo = rot uo, and u(w) = rot 4, where 4 satisfies (2.2) for 0 < t < T. 
We see that (2.3) has formally the form (1.1) in the case E = 0 with a coefficient /3 
depending on a. Note that we do not have to specify any boundary condition in 
(2.3), since u - n = 0 on r. 

2.2. SD With Trial Functions Continuous in Space. Let us now construct an 
SD-method for (2.3) following the pattern of Section 1.2 and using the same 
notation. Define for k > 1, 

= {h 0 E Xk': E Pk+l((T) X Pk (I,) (2.4) VK*IhE'h4O nX} 
VK = Ti X I,,,E Wh, =0 on r x I} 

i.e., 4h consists of piecewise polynomials of degree k + 1 and k in x and t, 
respectively, which are continuous in x and discontinuous in t. The SD-method for 
(2.3) can now be formulated as follows: Find 0h E' V*, with Vh defined by (1.2), such 
thatform=0,1,2,...,M-1, 

(h+ uh(,Wh) . Vc'h, 0 + h(o, + uh(wh) . VO))m + ([oh],o+)m 

= (f,o + h(ot + Uh(Wh) Vo)) M Vo e Vh, 

where uh(co) = rot Ah and +hh e 4h satisfies 

(2.5b) (4' Vh,) =(wh, ) V EP +h 

and Lh (.s 0) = 00. 

We now analyze this method and introduce the notation: 
M-1 

B(w; ve)= E (vt + w * Vv,O + h(Ot + uh(ah). Vo))m 
m=0 

M-1 

+ E QV][ +)?n + (V+9 0+)O' 
rn=1 

M-1 

L(8) = E (f,O + h(ot + uh(wh) *VO)) , + (to, +)? 
rn=0 

The problem (2.5) can then be formulated as follows: Find toih e Vh such that 

(2.6) B(Uh(wh); Xh,0 ) = L(0) VO e Vh, 

where uh( o) = rote/* and 4 *h E 'h satisfies (2.5b). We note that, since u (w) = 

rot 4h', the normal component uh(wh) - n is continuous across interelement 
boundaries and div uh(Wh) 0 0 in each element K, so that 

(2.7a) divuh(Wh) = O in Q, 

and also 

(2.7b) uh(Wh) *n=0 onFxI. 
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Below we shall refer to the following results, using the notation: 

1I1,1,12=I[,12+,,+M-l 02h(W)V 121 III|| =II 2[ [IM +Io+ E 110] Im+ 2h110t + u Q 

LEMMA 2.1. We have 

B ( U h(h); 0, 0) = 111 12 0e-. 

Proof. The lemma follows easily from the definition of B, using the facts that by 
integration by parts and (2.7), 

M-1 1 2 2 M-1 2 

(0tS,) + Al 06)m + Ko,? 1'l2 + 0 
- m=l 2[101M m=1 

(uh(4,h).Voo)Q=O. O 

LEMMA 2.2. For any constant C1 > 0, we have for 0 E d' 

[ +Q j mh]exp(Clh). 

Proof. For tn < t < tm?1 we have using again (2.7), 

11/0(t) l12 = I 12 _ 1 1 d0(s) /1ds 

| I2 - 2 tn1+1 (0t + Uh((Oh) )*V0,0)Qds 

418 Im~l + c110t + uh(?h) .s~ +V 112 + ||,s |dS, 

so that by Gronwall's inequality, for tm < t < tm+ n 1 

11 0(t) 112 110t' + Uh(Coh) 
. ' 

||11 +Io | 12 Im exp(Clh). 

Integrating over tm < t < tm+l and then summing over m = O,..., M - 1, we 
obtain the desired result. C 

LEMMA 2.3. There is a constant C such that if ph e Ih satisfies 

(2.8) (V 
A 
h, VO) Q (,) Q VkE4'h, 

then 

llU(4) -U h(oh) IQ < Chkl111l~11+2*Q, 
where 4 satisfies (2.2), u(wo) = rot 4, uh(w) = rot 4h and 

[r F 2 ak?1 ~ ~~~~~~2 1/2 

l4,Ik+2?Q S) +a 4(s) | dsI kJ~l4'(~s~lk?2,2 as k+1 JI 
Proof. We have, since (v4 - V4,, V4)Q = 0 for all + e 

|v4, - v4hIlQ < ljv4 - Vok1Q Vo E =k 

Here we choose + = R 0 P4, where 

(2.9) (R ? P4)(x,t) = Rv(x, .)(t), V(x,s) = (P,(.,s))(x), 
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and where 

P: _1() h = e f1(g): kIT EPkIl(T) VT E h) 

is the usual Hf1(gi)-projection, and 

R: L2(Im) -* Pk(Im) 

is the L2(I,)-projection. We have, with v given by (2.9), 

V(4 - () = V( - v) + V(V - 

Now, using standard estimates for P, we have for the first term 

IQI((X, S) _-PA ( S)(X)) 12 dx C(+1l( l2 

so that by integration 

I|V(4 - V) |IQ < Chk+114IIZ?2,Q. 
Further, by the obvious commutation relations 

vR = Rv9 -P= P- vR=R, aSJ as' 
we have for the second term from standard estimates for R and P: 

f| f Iv(v-k) 2 dtdx = L / IVv(x,s) - R(Vv(x, ))(s)I dxdt 

< Ch +1~)f JI |k1 2ak1 dsdx 
=Ch 2(k + 1)l V-v ( x, s )|ds dx 

a8k?+1 2 
=Ch 2(k +l)] V _v(x,s) dsdx 

= Ch2(k 1)j j v(Pakil+(.s)(X)) dxds 

8k?1 2 
Ch2(k?1)j | V a '(xs) dxds. 

Summation over m then completes the proof. O 

LEMMA 2.4. For any h > 0, the problem (2.6) admits at least one solution if 
f E L2(Q) and wo E L2(0) 

Proof. We shall apply a variant of Brouwer's fixed point theorem to prove that, 
given u(., tin), the problem (2.5) admits a solution for any m. Let Vt= {vI,: 
v E Vh} and 4" = + E=- +4h} and define Ptm: Vt V t by 

[Pmv,O] = (v, + um(v) vv, 0 + h(O, + um(v) v0))M 

- (Uh 9o?)m + (v+, 0+ )m-u- +) 

-(fq0 + h(O, + utm(V) *VO))m VOEVm, 

where u"t(v) = rot 4m, with 4m E- 4 m satisfying 

tr7,1, r7A) m= (V, 4A) WA 4 & m 
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and 
[v,] = KV-,O )m+ + (K+9?+)m +(V, )m. 

Clearly, Pnt is well-defined and is continuous on Vtm (for a fixed h), with the norm 
given by the scalar product [, ]. Further, Pmv _ if and only if v = 

satisfies (2.5). Now 
[Pvv = 2 [Iv IV + 12 + + IV+ 12 + 2h vI + UtM(V) vvVI1j 

-HIf IIm(IIvIIm + hJ|v, + Um(V) vVJIM) -uh I v+ Im 
so that using Lemma 2.2, 

[pmv v] > cIv12 - CivI(i t + lU Im) 
Hence, [P v, v] > 0 if Ivi = r is large enough, and by Brouwer's fixed point 
theorem it follows (see [15]) that there exists v = wm E Vtm with Ivi < r such that 
Pv 0, and the proof is complete. O 

For a uniqueness result we refer to the Appendix. 
We now turn to error estimates. We write e - =n - , where n = _ 

- =X h _ and Ch E Vh is a suitable interpolant of the exact solution W. Since W 
satisfies (2.3), we have for 0 e Vh 

B(u (w); w, 0) = L (0), 
so that by (2.6) and Lemma 2.1, 

11 1v1I2 = B(Uh(Wh); Wh - = B(u(w); w,) -B(Uh(Wh); ch ) 

(2.10) = B(U h(h); ,) + [B(u(w); w,) -B(Uh(Wh); ;,)] 

= T1 + T2, 

with the obvious definitions of T1 and T2. By integration by parts, using (2.7), we 
find 

M-1 

IT1 I = -(qD + Uh(wh) . )Q + - : (K1-9 [RD)m 
m=l 

(2.11) + h(71, + uh(wh) * + uh(h) h| 

1 
< 811, 1112 + C~-111 112 + E In_ | Uh(Wh) Vn l2) 

m=l 

Further, by Lemma 2.3 we have 

(2.12) I|uh(w)-u(w) IIQ , Chk+1II4,IIZ?2,Q, 
where uh(W) = rot 'h and 'h E + h satisfies (2.8). Also, 
(2.13) I|uh(wh) - uh(w) IIQ - _hIIQ , C(IIIIQ + 1II1IIQ), 
and hence, letting I II denote the L.(Q)-norm, 

||t + Uh(toh) V711Q < L||t + U(to) VnIIQ + j|(Uh(to) - U(o)) VnIIQ 

+ 11(uh(6) uh(W4h)) V?1Q 

{9~~~~~~~~~~~ 11n 1A AU(W 10 1, 
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Next, 

T2 = ((u(W) - uh (Wh)) . Vest A) 

+ h((U() - uh(Wh)) . + uh(Wh) .i 

so that by (2.12) and (2.13), 

( T2 I < CIIV II II IIQ(II IIQ + InI1IIQ + Chk1 |k4+ 2Q) 

+ 8IIItIII + Ch [I1V II (II1IIQ + II1IIQ + Ch k?+ 1I4 2Q)]. 

We now assume that 

(2.16a) IIv| Vo k0 + IIvn11 0I + 1 to Ik+ 1Q < C. 

In particular, this means by Sobolev imbedding and elliptic regularity, that also 

(2.16b) IIu(W) 1 I +IIIk?2,Q1 < C. 

Combining now (2.10), (2.11), (2.14)-(2.16) and Lemma 2.1 with C1 large enough, 
we get 

11 1D1 
2 c(h'I 12 + Em1 I + hIlIqI2,Q + E I mh + Ch2k+). 

Finally, by standard interpolation theory, we have (see, e.g., [2]): 

Iln IQ + h E 
12 

+ h2II n IIQ] , Chk+111X 

We can now finish the argument by applying a discrete Gronwall inequality of the 
following form: Suppose { ak}'M1 satisfies, for k = 1,. . ., M with M = C3h, 

ak<Cl E ajh+C2; 
1 < j < j 2 

then there is a constant C, depending only on the constants Ci, such that for 
h < 1/2C1 we have ak < C, k = 1, ..., M. 

We then obtain the following error estimate: 

THEOREM 2.1. If the exact solution X of (2.3) satisfies (2.16), and wh E Vh satisfies 
(2.6), then 111( - w| C ck+1/2. 

Remark 2.1. The P(h k +')-error from the approximate solution of the Poisson 
equation (2.2) according to (2.12) is here not fully balanced with the global 
?(h k + 1/2) estimate. To obtain such a balance one might in practice use a coarser 
mesh in x for the Poisson equation (2.2), keeping the degree k + 1 in x for A, or 
one might instead reduce this degree to k and mildly refine the mesh in x. E 

Remark 2.2. By Lemma 2.2 and the definition of the III 111ll-norm, we have from 
Theorem 2.1 in particular 

max Iw() ( t) 
- 

h(*t)II Ch k + 1/2 
teM 

where Sh( to) = Sh+?(~,tm). EJ 
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2.3. Discontinuous Galerkin. Extending the Discontinuous Galerkin method of 
Section 1.3 to the Euler equations, using the same notation, we obtain the following 
method: Find wh E Wh such that 

(a h + /3. Vice 0 + h(Ot + /3' vO))Q + [lhK E[ n + t /I 

=(f,@ + *h(Ot + ? 
* vO))Q VO E Wh, 

where /3 u (w") = rot Ah and Ah E Ah satisfies 

(2.17b) (vph Vh)Q = (@h, )Q Vf E Why 

and wh (I, 0) = o. Recall that, since /3 = rot Ah, we have that n * is continuous 
across the interelement boundaries of W'h' and thus 8K-(f/) is well-defined. Also, 
3 * n = 0 on r x I. To write (2.17) in more compact form, let us introduce the 
notation 

B(w; v,O) = (vt + w * Vw,@ + h(Ot + /3. VO))Q 

(2.18) + E [v]O+ln, + n *3Ids + (v+, +)O, 
K K-(f3)' 

L(v) = (f,0 + h(Ot + / * VO))Q + (Ko0?+)o, 

where again /8= uh(Wh) and aK(/3)' = aK(/3)\&2 x {O}. Then (2.17) can be 
written, with uh(wh) = rot Ah and Ah E 'h satisfying (2.5b), in the form 

(2.19) B(uh(Wh); Wh,0) = L(0) VO E Wh. 

This method can be analyzed using arguments very similar to those of the previous 
subsection. In particular, we have the following analogues of Lemmas 2.1 and 2.2, 
with similar proofs (as above, /3 = uh(Wh)). 

LEMMA 2.5. We have, with B defined by (2.18), 

B(uh(Wh); 0,0) =II0I2 Ve E Wh, 

where 

11101112 = [ + E In [Ol n, + n /3ds + 2hII0O + / V Q]. 
K aK (0)' 

LEMMA 2.6. For any constant C1 > 0, we have for 0 E Wh 

110,1 h lot + / . V02 
M 
E Imh 

[C, Q+ 

+hE | [0]2 In . 3I ds]exp(Clh), 
K aK__ (ft)/ 

where aK-(/3) = {(x, t) E aK_(/3)': n (x, t) = 0). 

The only difference in the analysis of (2.19), as compared to the above analysis of 
(2.6), is the appearance on the right-hand side of a term of the form 
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where as above, D = -_h, n = W- _ h and / = uh(h). This means that we will 
have to bound a term of the form 

T3 = E 
I 
n+ 12 In Uh(ah) I dS, 

K aK_(f3) 

which can be done as follows: 

IT3 1I 17 |IX0E[J n * uhG ) |ds + ds] 
K aK_ (#) aK_(,#)11 

CI, 1II, [Chl 1Uh (h) |K2+ Ch2j 
K 

< Ch2k?1lllW i,(lkll+ + C), 

where we have used the facts that 

f v2ds C-1f v2dx Vv E Pk(K), 
aK 

and that by (2.12) and (2.13), 

IIu( h) IIQ IIu() IIQ + ?IIIIQ + IIIIQ + C. 
Here and below, 11 * Ik? x denotes the WOk+1(Q)-norm. This leads to the following 
error estimate for (2.19), if X E Wok+1(Q): 

III|| - ||| < Chk + 1/2. 

3. The Navier-Stokes Equations. 
3.1. SD-Methods for Euler's Equation in (u, p)-formulation. It is not clear how to 

generalize the methods for the Euler equations of the previous section to the 
Navier-Stokes equations, the reason being that we do not have any boundary 
conditions for the vorticity. We shall therefore first present some different methods 
for the Euler equations, using the (u, p)-formulation (2.1), which may naturally be 
extended to the Navier-Stokes case. 

We first assume that the discrete velocities are continuous in x, and as before, 
satisfy the incompressibility condition exactly, i.e., we let the velocity space Wh be 
given by 
(3.1) Wh = {rot 4: 4p E- *h} 

where *'h as before, is given by (2.4) and in addition satisfies 
M-1 

(3.2) *hC H C'(Sm). 
"n =0 

Introducing also the pressure space 

(3.3) { Pk(T) X Pk(Im) MK = T x IM E= Wh} 

we now formulate the following SD-method for the Euler equations (2.1): Find 
(Uh, ah) E Wh X Qh such that 

M-1 
( h + Uh .Uh + 7ph V + h(V h + U * hV + \q))Q E ([U )m 

(3.4) g t *E =0 

=(g, v +h(v, ?uhvv+ q))Q V(vgq) EW= Q 
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where Uh (. 0) = U0. Using the notation 

B(w; vbj) = (Vt + w * Vv + Vq, 4 + h+ h vf + Vr))Q 

(3 .5a) ~~~+ E ([V,>+ m+(V,>+0, V = ( V, q), + <,r) , 
m=l 

(3.5b) L(+) = (gq( + + uh. V+ + Vr))Q, 

we can formulate problem (3.4) as follows: Find Uh = (uh, ph) E h X Qh such 
that 

(3.6) B(uh; Uh, v) = L(v) VD E Wh > Qh 

Note that the use of the modified test function v + h(vt + Uh V + vq) will 
give control over the quantity hI Iuh + Uh . VUh + VphIIQ in (3.6). It seems difficult 
to obtain control over the quantity VhlIjuh + Uh . VUhIQ, since multiplication with 
(v + h(v, + Uh . vv)) will introduce a term (vph, Uh . Vv)Q, which will not vanish 
in general and seems difficult to bound. Note further that taking v = 0 in (3.4), we 
obtain the following equation for ph E Qh: 

(3.7) (vph vq)Q = (g - Uh - Uh . vuhvq) Vq E Qh9 

which corresponds to a Poisson equation with Neumann boundary conditions for 
the pressure. 

,We now analyze (3.6) and introduce the norm 

1 M-1 
I[]22 

] 
V 

(3.8) rn = I m + I + E M + 2hJ|v, + + VqI Q 

As above (cf. Lemma 2.1), it follows that 

(3.9) B(u v, v) = || v | YvEWh 

and we also have the following analogue of Lemma 2.2. 

LEMMA 3.1. For any constant C1 > 0 we have for V? E Wh X Qh: 

IvIIIQ [C v + u vv+ q|Q + E v Irh]exP(Clh). 

Proof. We have, for tM < t < tm+9 

,V(t) 112 IV_ 12 +1_ de~ IV ll(S) 112 d 

= IV2 I2?+ - 2ftni+i (Vt + Uh . vv + vq, v) ds 
'hMft + 1 

,<IV_ Im+1 + c|Vt + Uh Vv + q||M + C~la ||()|S9d 

from which the desired result follows, arguing as in the proof of Lemma 2.2. 0 
Further, existence of a solution of (3.6) can be proved using basically the 

argument of the proof of Lemma 2.4. 
We now prove the following error estimate. 

THEOREM 3.1. If the solution (u, p) of (2.1) satisfies 

(3.10) IIUIlk+1,Q + IIPIk+1,Q + IIuIIiC '< O C, 
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and (Uh, ph) E Wh X Qh satisfies (3.4), then 

max ||u(*, t) - Uh(., t) IQ + IIIU - Uh III < Chk+1/2 
teI 

Proof. We write 

A- A= (- W) + (W - h) A + 
A 

(U - U.,p -p) ?(U - uhp -h) = (m -p) +(,p ph) 

where wA = (, p) e Wh>( Qh is the interpolant of u = (u, p). Using the fact that 

B(U; U. V) = L(b) Vb = (v, q) E W, x Qh' 

we have by (3.6), 

III1III2 = B(U; U - W = B(U; U - B(uh; W j) 

(3.11) = B(uh; 7 + (B(U; U -B(uh; U )) 

-T1 + T2, 

with the obvious definition of T1 and T2. Integrating by parts, we have by standard 
interpolation estimates, 

IT1 | = | + Uh. vD + V(p-ph))Q + 

M-1 

-E (q1,['])m+ h('q + uh. Vtq + V(p -p), 
ni = 1 

t + uh *vh + V(p - ph)) Q 

(3.12) 

81112il + C~ I12 E1- + + Uh|X + u + 7( p P) 112 

<1 1 ,If1112 + Ch2k+1 + hillq + Uh V7N + V7(P P)1II 8 Q. 

Similarly, 

Vit + uh . Vq + V(p -p) 

(3.13) < lI71tIIQ + IIV(p - p) IIQ + II(U - Uh) Vn 1Q + 11U Vn IIQ 
< IIqII1 Q + IIV(P - P) IIQ + IIVr1IKO(IIn1IIQ + IkIDQ) 
< Chk + CIIRIIQ. 

Also, 

IT2 1 = ((u - U h) Vu, ' + h(t + Uh + V(p -h))) 

(3.14) CIIVUIIOOIIDIIQ(11DIIQ + II71IIQ) + 1119 1112 

+Chllvulloo(11DIIQ + llqllQ). 
Combining (3.11) to (3.14), and using Lemma 3.1, we finally get 

1112 C(2k?1 + m K- 
m=l 
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so that by a discrete Gronwall inequality, 

11t12<Ch2k+1, 

from which the desired estimate follows. E 
Remark 3.1. From (3.7) and the velocity estimates of Theorem 3.1, we obtain the 

following estimate for the pressures, 

Vp - Vph 1Q < Ck-1/2 m 
Let us now relax the C1-condition (3.2) and assume only that "'h C i, as in 

Section 2, and let Wh and Qh be given by (3.1) and (3.3). In this case, the discrete 
velocities v E Wh have continuous normal components across interelement 
boundaries, while the tangential components may be discontinuous. The natural 
extension of the method (3.4) to this case reads: Find (Uh, ph) E Wh X Qh such that 

(Uh + /3* VUh + Vph, v + h(vt + /3* Vv + Vq))Q 

(3.15) + | [uhv?+Int+ n * /Ids 
K aK_(f) 

= (g, v + h(vt + / vv + vq))Q V(v,q) E Wh X Qh, 

where /3 = uh and uh = u0 on S2 x {O}. The analysis of this method is similar to the 
analysis of (3.4) just presented, with a modification analogous to that presented for 
the Discontinuous Galerkin method (2.17), and we obtain for the method (3.15) a 
result analogous to that stated in Theorem 3.1, assuming now that u E W k + 1 

3.2. SD-Methods for Navier-Stokes Equations. We first generalize the method (3.4) 
to the Navier-Stokes equations with small viscosity E > 0: 

Uh + U . VU + Vp -_ cU = g in 0 X I, 

(3.16) divu = O inS2 X I, 
u = 0 on xI , I, 
u = u0 ini2 for t= O. 

One is naturally led to the following method: Find (Uh, ph) E Wh X Qh such that 

(3.17) Be(uh; USh i) = L(v) Vv = (v, q) e Wh X Qh 

where 

Br(w, vat = B(w; v-, 0) + (VvVp)Q - e3(zv,4, + uh. vo + Vq)Q, 

and where B and L are defined by (3.5), and 8 = Ch with C as specified in Lemma 
3.2 below if E < h, and 8 = 0 if E > h. For problem (3.16) we have the following 
stability result (cf. [10], [16]). 

LEMMA 3.2. If C > 0 is sufficiently small, then for all Vi E Wh X Qh 

BJ(U; VV) > C(IIIII1 + eIvV2Q)9 

where 111 is defined by (3.8). 

Proof. We have for E > h 

B(uh V, 2) =IV2 + VV 1 - 8(AV VT + U VV + 
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and by the inverse estimate 

IIAVIIQ < Ch-lllvvllQ VV E Wh, 

we get 

e8(AV, V, + Uh . VV + vq)Q < ll,,III2 + e3Ch-2e11VvII1 

< (I 1112 + eIIVVII) 

if e3Ch-2 < ^, i.e., if CC < 1, which proves the desired result. E 
Arguing as above, we obtain in the case E < h a direct analogue of Theorem 3.1 

for the problem (3.17), with an additional term V(u - uh)IIQ on the left-hand 
side. 

Let us finally also consider an extension of the method (3.15) to the Navier-Stokes 
equations (3.16) with Wh and Qh given by (3.1) and (3.3). Since the velocities 
v E Wh may be discontinuous in space, we are led to introduce an additional 
variable to handle the elliptic term -eAu. As additional variable we shall use the 
vorticity X = rot u and seek an approximate vorticity in the space Qh given by (3.3). 

To motivate the formulation of the discrete problem, we first note that the Stokes 
problem corresponding to (3.16), obtained by omitting the nonlinear term u I VU, 
can, at least formally, be given the following variational formulation: Find (u, a): 
I -, W x Y, where W= {rot p: 4 E H(Q2)} and Y = H1(Q2), such that u(t) =o 
for t = 0 and on I, 
(3.18a) (ug V)a + e(rot o, v) = (g, v) Vv E W, 

(3.18b) -(rot 9, u) U = e(w, ) a VO E Y. 
This follows from the fact that with X = rot u, we have rot X = -/\u, since div u - 0. 
Further, since u = rot 4 for some 4 E Hd(02), we have that u * n = 0 on F, and 
(3.18b) implies that also the tangential component of u vanishes on F, so that in 
fact u = 0 on F. 

Returning now to the Navier-Stokes equations (3.16), and handling the nonlinear 
term as in the case of Euler's equations, we are led to the following SD-method for 
(3.16): Find (Uh, ph, (h) E Wh X Qh X Qh such that 

(uh + /3* VUh + Vph, V + 3(Vt + / VV + vq)) 

+ Eu | [uh]V+ Int + n */3Ids 
(3.19a) K aK_(f) 

+e(rot oh, v) + e3(rot oh, Vt + /3 Vv + vq) 

= (g, v + 8(v, + A. *vv + vq)) V(v, q) E Wh X Qh, 

(3.19b) e(rot 9, Uh) = e((h, 9) VO e Qh, 

where 8 = Ch with C > 0 sufficiently small and, as before, /3 = uh and uh 0( 0) = u0. 
Choosing (v, q, 9) = (uh, ph, *h) in (3.19), we obtain as above the following stability 
estimate: 

IuIIM +UhI+ L|f [u] In, + A nIds 
K aK_ ()' 

+ + /3. VUh + Vph 1Q + II (oh 112 
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from which the following error estimate can be derived, following the proof of 
Theorem 3.1: 

11 U ||u t) _ Uh(.,t)|| |V VphlIQ + hJJ64 6z|Q < Chk /1, max + j~ 
0 t < T 

assuming that E < h and 

|| U |k+l,oo + 11Pl|lkil + 11(011k+l < CO. 

Remark 3.2. The approximability properties of the space Qh for the vorticity ch 

are somewhat better than needed; it would be sufficient to have W - Co < Ch k + 1/2 

with X E Qh an interpolant of o. D 

4. Appendix. As an example of a uniqueness result for the methods considered, let 
us prove that the solutions of the discrete problem (2.6) are unique if the correspond- 
ing exact solution X is smooth enough, i.e., satisfies (2.16), and h is small enough. 
Thus, suppose that ch and ch are two solutions of (2.6) with corresponding 
velocities uh( ^) and Uh( co). By subtraction we then have for any m, writing 
9 = coh ih and assuming that 9(., tm)= 0, 

h (f, (Uh(0oh) - ih(Z5h)) * V)m 

= (0t'9)m +1l9 I +(uh(@,) IV99)m 

(4.1) +((-h(ah) - Uh(Coh)) . V@* 9 + h(9h + Uh( ,) )) 

+h119 + uh(Coh) . v@|| 

h + Rh(-h) . V@5h, (i-h(-h) - uh(Coh)) V9) 

By Theorem 2.1 and inverse estimates it is easy to see that 

haIIsI1t, + 11 Fh(-h) 110 C 

with a = r if k = 1 and a = 0 if k > 2. Together with (4.1), this proves that 

10 jm~+ I? + l + h12 + h(C,,h) . '7 1 h129II2 14 M2 + hIl$t + u*(^ VlM < Ch-all9llm, 

by virtue of the fact that 

jjUh(-5h) - Uh(Ch) Jm c CII 9JIM. 

However, by the argument used in the proof of Lemma 3.1, we have 

(4.2) II9IM C[h v9+ ( ) v9KM + hI9?+ Im 
and thus 

h-1119 112< Ch-lI9 112 
which shows that 9 0 if h is small enough, and the uniqueness result follows. 
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